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Abstract

A finite element model was developed to solve
for the acoustic pressure and energy fields in a
heterogeneous suppressor. The derivations from the
governing equations assumed that the material
properties could vary with position resulting in a
heterogeneous variable property two-dimensional
wave equation. This eliminated the necessity of
finding the boundary conditions between different
materials. For a two media region consisting of
part air and part bulk absorber, a model was used
to describe the bulk absorber properties in two
Complex metallic structures inside the
air duct are simylated by simply changing element
properties from air to the structural material in a
pattern to describe the desired shapes. To verify
the numerical theory, experiments were conducted
without flow in a rectangular duct with a single
folded cavity mounted above the duct and absorbing
material mounted inside a cavity. Changes in a
nearly plane wave sound field were measured on the
wall opposite the absorbing cavity. Fairly good
agreement was found in the standing wave pattern
upstream of the absorber and in the decay of
pressure level opposite the absorber, as a function
of distance along the duct. The finite element
model provides a convenient method for evaluating
the acoustic properties of bulk absorbers.

Introduction

The Helmholtz resonator cavity, wall mounted
bulk fibrous absorber and folded cavities are some
of the most common means used to attenuate sound.
Typical lining materials and construction
techniques are shown in Fig. 1. The chief
difference between the locally reacting liner and
the extended reacting liners of Fig. 1 is
illustrated in Fig. 2. In the locally reacting
liner, such as the Helmholtz resonator shown in
Fig. 2(a), the energy moves normal to the liner and
depends only on the local value of acoustic
pressure in the adjacent acoustic field. 1In
contrast, the bulk extended reaction liner or the
folded cavity, permits wave propagation in the
axtal direction, as shown in Fig. 2(b) and its
attenuation characteristics can depend on the
entire acoustic field.

Numerical techniques have been commonly
employed in the study of mufflers and aircraft
suppressors.!»2 In general, the absorbing
characteristics of the duct walls were modeled by
applying the classical admittance boundary
conditions at the duct walls. Consequently, wave
propagation in the axial direction within the liner
was generally not considered. In Ref. 3, a finite
element theory was developed to model wave
propagation in bulk materials as well as in any
heterogeneous medium. The absorbing characteristics
of the bulk material used in Ref. 3 relied on the
theoretical development presented by Hersh in
Ref. 4.

The present investigation will extend the work
of Ref. 3 to account for termination reflections
that occur from the exit in typical experiments and
to determine the energy distribution around bulk
absorber so that its effectiveness can be more
accurately evaluated. The new experimental aspects
of this paper will include more complex geometries
for the code validation. In particular, advanced
subsonic aircraft propulsion systems,? such as the
ducted propeller shown in fig. 3, employ thin cowls
which may require the use of novel suppression
techniques, such as folded cavities, to obtain low
frequency sound suppression. As pointed out by
Beckemeyer and Sawdy,6 sound transmission
characteristics can not be accurately predicted
when local reactive impedance models are used. A
folded cavity experiment is included as part of the
new and more extensive validation of the
heterogeneous finite element theory.

In the present paper, first the geometric
model and the appropriate governing equations and
boundary conditions will be presented. Next, the
finite element procedure for modeling and solving
complex problems will be discussed. Then a
numerical solution and an analytical solution to a
test problem will be compared. Finally, the
results of three validation experiments will be
discussed and compared to theory. New emphasis
will be placed on following the energy propagation
throughout the acoustic field.

Nomenclature

A amplitude

A; amplitude of + going n entrance mode

A; amplitude of reflected - going n entrance
mode

B; amplitude of + going n exit mode

B; amplitude of reflected - going n exit mode

b' characteristic duct height

ba dimensionless entrance height bé/b'

bb dimensionless exit height bs/b'

C dimensionless local speed of sound, c'/cé

Co dimensionless effective speed of sound,
Eq. (27, ce/co

o dimensionless speed of sound (identical to
unity)

cé reference adiabatic speed of sound
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£ Property tensor, Eg. (10)

f! freguency

A

K dimensionless heat transfer parameter, Eg. (2)

K wave number, Egq. (15)

kxn axial modal wave number, Egs. (13) and (14)

L dimensionless length, L'/b'

LT position of exit reflection coefficient
measurement

Nm number of modes in expansion, Eqs. (12) and
(16)

n mode number, Eg. (12) or (16)

n unit outward normal, Eq. (28)

p dimensionless pressure, P'(x.y,t)/pécéz

p dimensionless pressure, P()(,y,t)/ei“’t

Rr exit reflection coefficient, Eq. (19

t time

u dimensionless axial acoustic velocity, u‘/c(')a

X dimensionless axial distance coordinate, x'/b’

y dimensionless transverse distance coordinate,
y'/b'

b exit impedance, Eqg. (18)

a exit reflection gradient correction, £Eq. (24)

T exit reflection pressure correction, Eq. (22)

Y specific heat ratio

€ property constant, Eqs. (5) and (6)

4 porosity

n property constant, Egq. (7)

p dimensionless density, p'/pé

o dimensionless viscous loss coefficient

w dimensionless angular velocity, w‘bé/cé

w' angular velocity

Subscripts:

1 region 1

2 region 2

a entrance duct

b exit duct

i nodal point

0 incident wave or ambient condition

X direction component
y direction component

Superscripts:

dimensional quantity
~ approximate finite element prediction
Geometric Model

Consider the idealized acoustic duct shown in
Fig. 4 which could be used to simulate acoustic
wave propagation in a general duct in the absence
of flow. The interior passage of the duct is
assumed to contain air while a fibrous absorber is
mounted in the cavity above the duct in the central
portion. The lower wall is assumed hard or can be
taken as a ltine of symmetry.

Some sort of acoustic pressure disturbance is
assumed to generate a harmonic pressure field at
minus infinity in the entrance duct. This fielg
will propagate down the duct and act as the input
driving boundary condition for the problem. A
positive going acoustic wave of known magnitude is
assumed at the entrance (x = 0.0) of the finite
element portion of the duct. The pressure wave may
be plane or have significant transverse y
pressure variations. The present paper will focus
on the interaction (absorption) of these
propagating acoustic waves with the fibrous bulk
absorbing material.

In the uniform, infinitely long entrance and
exit section regions with perfectly hard walls, the
exact solution of the governing differential
equations can be easily written in terms of the
duct modes; thus, simple analytical expressions can
be employed to describe the pressure field in these
regions. In the central region which includes both
the duct and the fibrous absorbing region, the
finite element analysis is employed to determine
the pressure field.

The assumed known pressure waves propagating
down the hard entrance duct are either reflected,
transmitted or absorbed by the nonuniform segment
of the duct containing the bulk absorber. Pressure
mode reflection at the inlet to the absorbing
region and transmission at the outlet of the
absorbing region, are determined by matching the
finite element solution in the interior of the
central region to the known analytical eigen
function expansions in the uniform inlet and outlet
ducts. This permits a multimodal representation
accounting for reflection and mode conversion by
the nonuniform absorbing section. This approach
has been found to accurately model reflection and
transmission coefficients.

Governing Equations

The governing equations are the state,
continuity, and momentum linearized gas dynamics
equations in the absence of mean flow. In the
fibrous material, the Hersh form of the governing
equations® will be employed. By treating the bulk
material as a momentum and thermal sink, Hersh
modified the conventional linearized gas equations
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such that new complex propagation constants could
account for acoustic energy absorption in the
material. The development was semi-empirical since
adjustable constants were employed, however, the
dimensional parameters developed appear to
accurately follow the experimental trends.
Different sets of constants were determined for the
fibers oriented perpendicular to, or parallel to,
the direction of propagation. Consequently, some
properties in the following equations will be
subscripted with either x or y to indicate
anisotropic behavior.

As shown in Ref. 3, the equations of state,
continuity, and momentum were combined to yield the
following wave equation in dimensionless form:

d |1 ;| 8 ] apP
ax EQ o ax ay 39 . c ay
T Qe T e
3p2
SR S | S M
2 .2
poceat

The usual symbols for acoustic propagation are
employed and all are explicitly defined in the
Nomenctature. Some new terms that are not found in
the conventional wave equation in air are the
porosity ¢, viscous loss coefficient o, and
effective speed of sound co. The effective speed
of sound is defined as

K .
2 — i
P % <po”) t
= _‘Y_' T ——
X + i
(pow>

where K represents a dimensionless heat transfer
parameter defined in Ref. 3 or 4 in relation to the
physical properties of the bulk absorber. For high
frequencies, K/pgw << 1, the usual adiabatic
relationship for the speed of sound is recovered.

2
Ce=

Q

(2)

°

Assuming the pressure perturbation P to be

harmonic in time,
P(x,y,t) = pix,yelwt (3

Eq. (1) becomes

a_|___ 1 _dpf, 23 ! 3p
3x Po i°x ax ay Po ifl y
(E"E«T T e

2
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For simplicity, let

P
[o] : X (5)

P
.23 X
cy 7 i T (6
s %D
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Thus, the wave equation becomes

o (1 @), 8 (L ap), 2 .
% <°x ax) + 3y (Cy ay) + pwp =0 (8)

Equation (8) represents the governing wave equation
to be solved by finite element theory.

For later use in applying the finite element
theory, it is convenient to express Eq. (8) in
vector form,

7 (E- U +wlp=0 (9

where the property tensor E s represented by

T

€
X

0

ao

and the vector product of the tensor E and a
vector Up follows the common definition
(Egs. (A.4-19), Ref. 8).

Uniform Duct Analytical Solution

The proper termination boundary condition of
the finite element region requires that acoustic
waves are not artificially reflected by the
numerical difference equations employed at the
first or last column of nodal points. Considerable
research has been expended in the acoustic and
electromagnetic fields to obtain a good numerical
approximation for this condition. Using this
research base, the analytical solution of Eq. (8)
for acoustic wave propagation in a uniform hard
wall duct will be employed to give the termination
boundary condition for the finite element region.

The analytical solution for pressure waves
traveling between parallel hard plates where the
boundary condition is

3p _ - -
ay - 0 at y=0 and y = ba an
is given as (see for example Ref. 9, p. 504)
N
. + (n - D= 'ikxnx
p.{x,y) = A cos|——y|e
a n ba
n=]
N
m :
+ik, X
c) A cos[(—n—:——m—y}e xn (12)
n b
a
n=1
For the elwt time dependence used here, the
-ikynX
Afe X" term represents a wave propagating in

n



. ) - Tkxnx
the positive x direction while the Ane

term represents a wave moving in the negative «x
direction.

The axial wave number ky, 1in Eq. (12) is

2
‘/ (n - D (n - D
Kxn = k4/) - [-—_E;E_—} —__B;I—__s 1 13

4

k= ofue = & (15)

The modal expression represented by Eg. (12)
has been truncated to a total of Ny modes of the
infinite number possible. Thus, a total of Np
unknown modal amplitudes Ay, Ay, -- Ayp have been
introduced. The A* terms will be assumed as
known. Np constraint equations will be required
to determine each of these unknown reflection
coefficients. The equations used to define these
coefficients will be introduced in the following
section on boundary conditions.

A similar solution exists at the exit, except
only positive going waves are considered

Nn

+ (n - D 'ikxnx
pb(x,y) = Bn cos|—p—Y|e (16)

n=1 b

where kyp 1in Eq. (16) is based on characteristic
duct height of exit by.

Unfortunately, in a real world experiment duct
apparatus, reflections occur at the termination of
the duct. In many cases, absorptive material is
fncluded in the termination to reduce this
reflection. The reflections are observed in the
experimental data by the appearance of small
standing wave patterns at the duct exit. From
these standing wave patterns or other means!'O the
impedance or exit reflection coefficient can be
measured. For plane wave propagation, Eq. (16) can
be modified to account for exit reflection. Since
only a single plane wave approximation to Eq. (16)
will be considered, the finite element grid must be
extended sufficiently far from the exit so that all
higher order modes decay. This is easily checked
by examining contour pressure plots of the acoustic
field.

For a single plane wave propagating in the
exit duct, Eg. (16) can be rewritten as

p(x) = BTe-xkx R B-g]kx _ B+e-1kx

) i 1+ —

an

In this case, the reflected wave represented by
the B~ term has been included in the propagation
equation. The impedance at any x value is
defined as

BT .
1+ 1 e12kx
B+
() . P _ 498 . 1 (18)
p.C p.cu _c.iap -
o0 Toon 0 gy B iakx
w 1 - - e
8
or
2(x) 1
B p C_ .
B G- - e~ 12Kx _p (x)e’12kx = constant
gt Z(x) ol r
1 pOCo
(19)

If the measured value of the exit impedance or
reflection coefficient is taken at position Ly it
follows that

—i2kLT
= Rr(LT)e (20)

2l

Substituting Eq. (20) back into Eq. (17)
yields the new pressure requirement at the exit

p(x) = I8¢ KX Qn

where

-iZk(LT-x)
=14+ Rr(LT)e (22)

In a similar manner, the new condition for the
pressure gradient at the exit, which is used in the
finite element formulation, can be written as

ap _ _ + =Jjkx
3 = 1kaB]e 23

where

—12k(LT—x)
a =1 - Rr(LT)e (24)

Boundary Conditions

A variety of boundary conditions will be used
in the finite element solution of Eq. (1) for the
model problem which is displayed in Fig. 4. Each
of the conditions will now be briefly discussed.

Input Conditions

The analysis assumes a given number of Np
positive going waves whose amplitudes A; are
known. These modes effectively set the level of
the scalar pressure field in the finite element
region and can be viewed as the equivalent
Dirichlet boundary conditions required for the
elliptic boundary value problem defined by Eq. (1).
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In all the solutions to be presented in the results
section of this report, a plane wave input is
assumed; that is, A} is taken as unity and the
rest of the higher modal amplitudes are assumed
zero.

Pressure Continuity

In general, the scalar pressure field is
continuous across an interface except where sources
are present. Thus, the boundary condition at the
interface between the entrance duct and the finite
element region requires

pa =D (x=20;0<cy<by) (25)
where py 1is the modal representation of the scalar
pressure field in the analytical inlet region given
by Eq. (12) and p implies an approximate finite
element numerical solution to the true solution.
Applying Egq. (25) is not quite as easy as it looks.
A weighted residual approach is used with the
weighting function equal to the eigen function of
the analytical solution represented by the cosine
terms in Eq. (12). Ny separate equations are
generated; one for each of the unknown reflection
coefficients. A full discussion can be found in
Ref. 10, Eqs. (43) to (52). Similar equations are
used at the exit.

Velocity Continuity

In addition to the pressure continuity, the
axial acoustic velocity must also be continuous
across the interface to the finite element region.

u(x =0; 0 <y < by (26)

Ua=
Again, uy s the modal representation of the axial
velocity field in the analytical solution and u
represents the approximate finite element solution.
Using the momentum equations (Ref. 3, Eq. (21)) to
express the axial velocity in terms of the pressure
field yields

QD
©
k-4

)

Q

Q7

‘Ol—'
Q
>
il
Prl—'
[o¥]
>

a X
Again, a similar equation applies at the exit.

Hard Wall Boundary Condition

At the hard walls shown in Fig. 4, the
transverse acoustic velocity is zero. Again, using
the momentum equations to relate the acoustic
velocity to the pressure fields requires
(28)

Vp - n=0

Finite Element Theory

The finite element formulation of the
heterogeneous wave equation is now generated by
using the weighted residual approach with the
Galerkin approximation to obtain an integral form
of the variable property wave equation over the
whole (global) domain.

is first divided into
The

The continuous domain D
a number of discrete areas as shown in Fig. 4.
particular pattern chosen has been found to give
accurate results for a minimum number of elements.

OR QuALITY
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In the classical weighted residual manner, the
pressure field is curve-fitted in terms of all the
unknown nodal values pi(xy,yj). The finite
element aspects of converting Eg. (1) and the
boundary conditions into an appropriate set of
globa] difference equations can be found in text
books!3 as well as in Ref. 11 and for conciseness
will not be presented herein. In Ref. 11, an exact
finite element analog of Eg. (1) for electromagnetic
propagation has been solved by the Galerkin finite
element theory with linear elements.

Experimental Apparatus and Procedure

A test apparatus was constructed to verify the
numerical method for a duct having a fibrous
absorbing wall and no mean flow. The general
acoustic duct system described in Ref. 3 was
employed. The simple no-flow apparatus is shewn
schematically in Fig. 5 while an actual photograph
of the test section and instrumentation is shown in
Fig. 6. The experimental system was designed to
simulate plane wave propagation in an infinite duct.

Reference 3 describes in detail the acoustic
source, test section, fibrous absorber test sample,
microphone installation, and measurement accuracy.
The particular configuration used in the tests will
be described in the Discussion of Results section
which now follows.

Discussion of Results

For theory and code validation, the finite
element solution is first applied to a theoretical
case where an exact analytical solution exists.
Next, the experimental results are compared to
finite element predictions.

Normal Incidence

The first case considers a step change in
material density from a nondimensional value of 1
to a value of 4 at an axial position of x equals
0.25 inside the finite element grid, as seen in the
upper portion of Fig. 7. In this case the porosity
is unity, and the viscous loss coefficients oy
and oy are assumed to be zero so that ey and
ey take on the real values of 1 and 4,
respectively. The p parameter was assumed to be
1 and the dimensionless incident frequency was
assumed to be 2.

As shown in Fig. 7, the finite element and
exact analytical theories (Ref. 14, p. 83) are in
excellent agreement for the rms pressure. The
reflections from the interface between the two
density changes are clearly represented by the
standing wave pattern ahead of the interface.
Observe that the magnitude of the pressure
increases inside the material.

The key facet of this example illustrates that
it is not necessary to employ any interfacial
boundary conditions. The change in properties at
the interface is automatically handled by the
heterogeneous form of the differential equation.
As seen in Fig. 7, the change in material at  «x
0.25 inside the finite element grid automatically
produces the reflected standing wave characteristic
of an impedance change.

of



Wall Absorber

Figure 8 shows a comparison of experiment to
theory for the open bulk absorber case shown by the
upper schematic in Fig. 8 and by the actual
hardware in Fig. 6. In the theoreticatl
predictions, the material properties were evaluated
using Hersh's correlations. However, a parametric
evaluation of Hersh's viscous Joss coefficient
indicated that increasing the viscous loss
parameter would improve the correlation of the
experimental results. Consequently, Hersh's
prediction for the viscous loss coefficient was
increased from 0.1133 to 0.4133. Other
experimental observations also suggested that
Hersh's empirical coefficient o could be
underestimating viscous effects. Using an
impedance tube, Dahl and RicelO reported larger
measured absorption than predicted with the Hersh
model in the 1500 Hz frequency range associated
with the present experiment. The following
properties were used in the experimental data
correlation:

Pr = 0.71 v' = 1.51x10-3 m?/sec f' = 1560 Hz
vy = 1.4 d' = 1.254x10-2 m Vp = 1.0
Vy = 0.44 Tn = 1.0 ¢ = 0.9945
(29
and
ex = £y = 1.0055 -10.4133 (30)
p = 1.0000 -i0.04805 (31)

The exit termination reflection coefficient

Rp(L1) used in Eq. (20) was measured. Using this
measured value of Re(Ly), T and « in Eqs. (22)
and (24) were calculated as follows:
T(Ly) = 0.9176 +10.0977 (32)
ally) = 1.0824 -10.0977 (33)

As seen in Fig. 8, the theory and experiment
are in good agreement. In particular, the
magnttude and wave length of the entrance standing
wave due to the bulk absorber cavity is in close
agreement with theory although a slight shift in
the pattern (phase) is seen. The fall off of
pressure in the central portion of the duct is also
predicted very well. In the axial region from «x
equals 8 to 12 as shown in Fig. 8, the standing
wave pattern results from reflections off the
absorbing wedge in the exit horn (see Fig. 5).
theory very accurately predicts these standing
waves.

The

The theory used to predict the standing wave
patterns in the exit assumed a single dominant
plane wave. Since the first nonplane mode begins
propagating at a frequency of 1701 Hz in the
experimental apparatus of Fig. 6, the choice of
1560 Hz for the data frequency guarantees that only
plane waves will propagate in the straight portion
of the duct far from the fibrous absorption area.
This is clearly shown by the theoretical contour
plots shown in Fig. 9. [In the vicinity of the
fibrous bulk absorber entrance and exit region,
higher order acoustic modes are present as

indicated by the nonplanar pressure profiles.
However, far from the bulk absorber region at the
axial position of x -equals 13, where the
analytical region couples to the finite element
region, the pressure wave profile is essentially
plane. Thus the plane wave reflection coefficient
theory of Eq. (17) is valid.

Finally, the theory can be used to evaluate
the local effectiveness of a bulk absorber by
determining the axial acoustic energy content of
the duct. The energy at any axial position 1s the
transverse summation of the local acoustic
intensity (product of pressure p and conjugate
acoustic velocity wu) across the duct. Figure 10
displays the axial energy as a function of axial
position for this experimental case. The incoming
wave energy has been normalized to a value of 1.
Thus, the dip in incoming energy below 1 in the
entrance portion of the duct represents the
reflected component of energy. Surprisingly, at
the axial position of 7 to 8, the net energy in the
duct is rising. Energy entering the beginning
portion of the bulk absorber is transported through
the absorber to the exit portion of the duct.

Thus, the second half of the bulk absorber is very
ineffective in reducing the transmitted energy.

Folded Cavity

Folded cavities have been found to be useful
in the reduction of low frequency sound in confined
spaces such as turbofan nacelles? or in the thin
cowl of the high speed ducted propellers shown in
Fig. 3. Low frequency noise suppression in these
aircraft cowls can be achieved without excessive
acoustic liner backing depth if the backing volume
is formed as a long shallow cavity foided to lie
along the length of the cowl.

The second experiment and theory comparison
will illustrate how easily the finite element
theory can be modified to account for complex
absorbing cavities in the wall. In particular, a
folded cavity was constructed by "taping over" a
portion of the bulk absorber interface thus
creating a folded cavity (see the upper portion of
Fig. 11).

To model this folded cavity, the same finite
element grid is employed in the solution as was
used in Fig. 8. However, in this case, the
material properties representing the metal tape
were simulated by simply changing the real part of
e to a large number (1x109). 1In effect a large
impedance mismatch is generated at the interface so
that these elements now represent the solid
metallic surface of the tape.

As seen in Fig. 11, the theory and experiment
are still in good agreement. The magnitude of the
standing wave in the entrance duct is somewhat
larger than the previous case but still in
reasonable agreement with the theory. The fall off
of pressure in the central portion of the duct is
still predicted quite accurately. A second
analysis was also performed with the elements shown
in insert A of Fig. 11 with identical results. In
this case, the element thickness was equal to the
thickness of the tape and appears as a solid line
in insert A.
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Finally, the energy level in the folded cavity
experiment was found to decrease throughout the
duct as shown in Fig. 12. In this case the final
energy level at the exit termination was slightly
less than the previous example shown in Fig. 10.
Part of this decrease is due to increased reflected
energy at the entrance of the folded cavity.

Structural Blockage

To simulate blockage in a duct or tunnel with
splitters or instrumentation support, two metallic
spacers were inserted into the test duct as shown
by the upper schematic of Fig. 13. Again, this
structure was simulated merely by changing the
properties of the elements in the duct as was done
with the folded cavity. Thus, the same finite
element grid was employed in the solution. As with
the previous two cases, good agreement between the
theory and experiment is seen in Fig. 13.

Concluding Remarks

A finite element model was developed to solve
for the acoustic pressure field in a region that
was heterogeneous. The derivation from the
governing equations assumed no mean flow and that
the material properties could vary with position
resulting in a heterogeneous variable property
two-dimensional wave egquation. This eliminated the
necessity of finding the boundary conditions
between the different materials. Consequently,
complex structures can be easily modeled simply by
changing the properties of elements in the
calcuiational domain.

For a two media region consisting of part air
and part bulk absorber, a model was used to
describe the bulk absorber properties in two
directions. Experiments to verify the numerical
theory were conducted in a rectanguiar duct with no
mean flow, absorbing material mounted on one wall,
and various forms of structure introduced into the
duct. Changes in the sound field, consisting of
planar waves, were measured on the wall opposite
the absorbing material. As a function of distance
along the duct, fairly good agreement was found in
the standing wave pattern upstream of the absorber
and in the decay of pressure level opposite the
absorber.

The numerical formulation is relatively simple
to use and appears to give accurate modeling of the
experimental data. The theory may be a useful tool
in the evaluation of viscous loss coefficients in
bulk materials.
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FIGURE 1. - LINING MATERIALS AND CONSTRUCTION.
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FIGURE 2. - BOUNDARY CONDITIONS EMPLOYED TO SIMULATED
ABSORBING WALL.
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FIGURE 4. - TWO DIMENSIONAL DUCT FINITE ELEMENT MODEL.
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FIGURE 6, - MICROPHONE TEST PLATE AND MOUNTED FIBROUS ABSORBER.
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FIGURE 7. - COMPARISON OF THE MAGNITUDE OF THE AXIAL
RMS PRESSURE VARIATION ALONG THE LOWER WALL IN A
UNIFORM DUCT WITH HARD WALLS AND A CHANGE IN PROPER-
TIES OF THE MEDIA AT X OF 0.25 (€4 = 1.0 AND £, = 4.0)
AS OBTAINED BY USING AN EXACT SOLUTION AND A FINITE
SOLUTION FOR A PLANE WAVE (MODE-ONE) INCIDENT AT
X=0WITH 0 = 2m.
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FIGURE 8. - EXPERIMENTAL AND THEORETICAL AXIAL
PRESSURE PROFILE ALONG LOWER WALL FOR OPEN
BULK CAVITY.
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FIGURE 11. - EXPERIMENTAL AND THEORETICAL AXIAL
PRESSURE PROFILE FOR FOLDED CAVITY BULK ABSORBER
AS MEASURED ALONG THE LOWER WALL.
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